Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
mSphere ; 7(3): e0016422, 2022 06 29.
Article in English | MEDLINE | ID: covidwho-1923114

ABSTRACT

Bourbon virus (BRBV) was first discovered in 2014 in a fatal human case. Since then it has been detected in the tick Amblyomma americanum in the states of Missouri and Kansas in the United States. Despite the high prevalence of BRBV in ticks in these states, very few human cases have been reported, and the true infection burden of BRBV in the community is unknown. Here, we developed two virus neutralization assays, a vesicular stomatitis virus (VSV)-BRBV pseudotyped rapid assay and a BRBV focus reduction neutralization assay, to assess the seroprevalence of BRBV neutralizing antibodies in human sera collected in 2020 in St. Louis, MO. Of 440 human serum samples tested, three (0.7%) were able to potently neutralize both VSV-BRBV and wild-type BRBV. These findings suggest that human infections with BRBV are more common than previously recognized. IMPORTANCE Since the discovery of the Bourbon virus (BRBV) in 2014, a total of five human cases have been identified, including two fatal cases. BRBV is thought to be transmitted by the lone star tick, which is prevalent in the eastern, southeastern, and midwestern United States. BRBV has been detected in ticks in Missouri and Kansas, and serological evidence suggests that it is also present in North Carolina. However, the true infection burden of BRBV in humans is not known. In the present study, we developed two virus neutralization assays to assess the seroprevalence of BRBV-specific antibodies in human sera collected in 2020 in St. Louis, MO. We found that a small subset of individuals are seropositive for neutralizing antibodies against BRBV. Our data suggest that BRBV infection in humans is more common than previously thought.


Subject(s)
Thogotovirus , Ticks , Animals , Antibodies, Neutralizing , Humans , Missouri/epidemiology , Seroepidemiologic Studies , United States
2.
mSphere ; 6(4): e0045021, 2021 08 25.
Article in English | MEDLINE | ID: covidwho-1341307

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) seropositivity was assessed for 3,066 individuals visiting hospitals in St. Louis, Missouri, during July 2020, November 2020, or January 2021. Seropositivity in children increased from 5.22% in July to 21.16% in January. In the same time frame, seropositivity among adults increased from 4.52% to 19.03%, prior to initiation of mass vaccination. IMPORTANCE This study determined the percentage of children and adult samples from the St. Louis metropolitan area in Missouri with SARS-CoV-2 antibodies during three collection periods spanning July 2020 to January 2021. By January 2021, 20.68% of the tested individuals had antibodies. These results show the evolution of the SARS-CoV-2 pandemic in St. Louis, Missouri, and provide a snapshot of the extent of infection just prior to the start of mass vaccination.


Subject(s)
COVID-19/immunology , SARS-CoV-2/immunology , Adolescent , Adult , Aged , Antibodies, Viral/immunology , COVID-19 Serological Testing/methods , Child , Child, Preschool , Female , Humans , Male , Middle Aged , Missouri , Pandemics/prevention & control , Seroepidemiologic Studies , Young Adult
3.
Cell Rep ; 36(3): 109400, 2021 07 20.
Article in English | MEDLINE | ID: covidwho-1283974

ABSTRACT

The development of an effective vaccine against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the etiologic agent of coronavirus disease 2019 (COVID-19), is a global priority. Here, we compare the protective capacity of intranasal and intramuscular delivery of a chimpanzee adenovirus-vectored vaccine encoding a prefusion stabilized spike protein (chimpanzee adenovirus [ChAd]-SARS-CoV-2-S) in Golden Syrian hamsters. Although immunization with ChAd-SARS-CoV-2-S induces robust spike-protein-specific antibodies capable of neutralizing the virus, antibody levels in serum are higher in hamsters vaccinated by an intranasal compared to intramuscular route. Accordingly, against challenge with SARS-CoV-2, ChAd-SARS-CoV-2-S-immunized hamsters are protected against less weight loss and have reduced viral infection in nasal swabs and lungs, and reduced pathology and inflammatory gene expression in the lungs, compared to ChAd-control immunized hamsters. Intranasal immunization with ChAd-SARS-CoV-2-S provides superior protection against SARS-CoV-2 infection and inflammation in the upper respiratory tract. These findings support intranasal administration of the ChAd-SARS-CoV-2-S candidate vaccine to prevent SARS-CoV-2 infection, disease, and possibly transmission.

4.
Immunity ; 54(6): 1290-1303.e7, 2021 06 08.
Article in English | MEDLINE | ID: covidwho-1237724

ABSTRACT

Dissecting the evolution of memory B cells (MBCs) against SARS-CoV-2 is critical for understanding antibody recall upon secondary exposure. Here, we used single-cell sequencing to profile SARS-CoV-2-reactive B cells in 38 COVID-19 patients. Using oligo-tagged antigen baits, we isolated B cells specific to the SARS-CoV-2 spike, nucleoprotein (NP), open reading frame 8 (ORF8), and endemic human coronavirus (HCoV) spike proteins. SARS-CoV-2 spike-specific cells were enriched in the memory compartment of acutely infected and convalescent patients several months post symptom onset. With severe acute infection, substantial populations of endemic HCoV-reactive antibody-secreting cells were identified and possessed highly mutated variable genes, signifying preexisting immunity. Finally, MBCs exhibited pronounced maturation to NP and ORF8 over time, especially in older patients. Monoclonal antibodies against these targets were non-neutralizing and non-protective in vivo. These findings reveal antibody adaptation to non-neutralizing intracellular antigens during infection, emphasizing the importance of vaccination for inducing neutralizing spike-specific MBCs.


Subject(s)
Antibodies, Viral/immunology , Antibody Formation/immunology , B-Lymphocytes/immunology , COVID-19/immunology , Host-Pathogen Interactions/immunology , Immunodominant Epitopes/immunology , SARS-CoV-2/immunology , Antibodies, Neutralizing/immunology , Antibody Formation/genetics , B-Lymphocytes/metabolism , Computational Biology/methods , Cross Reactions/immunology , Epitope Mapping , Female , Gene Expression Profiling , High-Throughput Nucleotide Sequencing , Host-Pathogen Interactions/genetics , Humans , Immunodominant Epitopes/genetics , Immunologic Memory , Male , Neutralization Tests , Single-Cell Analysis/methods , Spike Glycoprotein, Coronavirus/immunology , Transcriptome
5.
mSphere ; 6(1)2021 02 03.
Article in English | MEDLINE | ID: covidwho-1063057

ABSTRACT

Reported coronavirus disease 2019 (COVID-19) case counts likely underestimate the true prevalence because mild or asymptomatic cases often go untested. Here, we use a sero-survey to estimate the seroprevalence of IgG antibodies against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in the St. Louis, MO, metropolitan area in a symptom-independent manner. Five hundred three adult and 555 pediatric serum/plasma samples were collected from patients presenting to Barnes-Jewish Hospital or St. Louis Children's Hospital between 14 April 2020 and 12 May 2020. We developed protocols for in-house enzyme-linked immunosorbent assays (ELISAs) using spike and nucleoprotein and used the assays to estimate a seroprevalence rate based on our samples. Overall IgG seropositivity was estimated to be 1.71% (95% credible interval [CI], 0.04% to 3.38%) in pediatric samples and 3.11% (95% CI, 0.92% to 5.32%) in adult samples. Seropositivity was significantly lower in children under 5 years of age than in adults, but rates between adults and children aged 5 or older were similar. Of the 176 samples tested from children under 4 years of age, none were positive.IMPORTANCE This study determined the percentages of both children and adult samples from the greater St. Louis metropolitan area who had antibodies to SARS-CoV-2 in late April to early May 2020. Approximately 1.7 to 3.1% of the tested individuals had antibodies, indicating that they had previously been infected by SARS-CoV-2. These results demonstrate that the extent of infection was about 10 times greater than the number of confirmed cases at that time. Furthermore, it demonstrated that by 5 years of age, children were infected to an extent similar to that of adults.


Subject(s)
Antibodies, Viral/blood , Antibodies, Viral/immunology , COVID-19/blood , COVID-19/immunology , SARS-CoV-2/immunology , Adolescent , Adult , COVID-19/epidemiology , Child , Child, Preschool , Enzyme-Linked Immunosorbent Assay/methods , Female , Humans , Immunoglobulin G/blood , Immunoglobulin G/immunology , Infant , Male , Middle Aged , Missouri/epidemiology , Seroepidemiologic Studies , Young Adult
6.
mBio ; 12(1)2021 01 19.
Article in English | MEDLINE | ID: covidwho-1038406

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is currently causing a global pandemic. The antigen specificity of the antibody response mounted against this novel virus is not understood in detail. Here, we report that subjects with a more severe SARS-CoV-2 infection exhibit a larger antibody response against the spike and nucleocapsid protein and epitope spreading to subdominant viral antigens, such as open reading frame 8 and nonstructural proteins. Subjects with a greater antibody response mounted a larger memory B cell response against the spike, but not the nucleocapsid protein. Additionally, we revealed that antibodies against the spike are still capable of binding the D614G spike mutant and cross-react with the SARS-CoV-1 receptor binding domain. Together, this study reveals that subjects with a more severe SARS-CoV-2 infection exhibit a greater overall antibody response to the spike and nucleocapsid protein and a larger memory B cell response against the spike.IMPORTANCE With the ongoing pandemic, it is critical to understand how natural immunity against SARS-CoV-2 and COVID-19 develops. We have identified that subjects with more severe COVID-19 disease mount a more robust and neutralizing antibody response against SARS-CoV-2 spike protein. Subjects who mounted a larger response against the spike also mounted antibody responses against other viral antigens, including the nucleocapsid protein and ORF8. Additionally, this study reveals that subjects with more severe disease mount a larger memory B cell response against the spike. These data suggest that subjects with more severe COVID-19 disease are likely better protected from reinfection with SARS-CoV-2.


Subject(s)
COVID-19/immunology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Adult , Antibodies, Neutralizing/immunology , Antibodies, Viral/blood , Antibodies, Viral/immunology , Antigens, Viral/immunology , B-Lymphocytes/immunology , COVID-19/blood , COVID-19/virology , Coronavirus Nucleocapsid Proteins/immunology , Cross Reactions , Epitopes/immunology , Female , Humans , Immunity, Humoral/immunology , Male , Middle Aged , Phosphoproteins/immunology
7.
Res Sq ; 2020 Sep 25.
Article in English | MEDLINE | ID: covidwho-807694

ABSTRACT

Discovery of durable memory B cell (MBC) subsets against neutralizing viral epitopes is critical for determining immune correlates of protection from SARS-CoV-2 infection. Here, we identified functionally distinct SARS-CoV-2-reactive B cell subsets by profiling the repertoire of convalescent COVID-19 patients using a high-throughput B cell sorting and sequencing platform. Utilizing barcoded SARS-CoV-2 antigen baits, we isolated thousands of B cells that segregated into discrete functional subsets specific for the spike, nucleocapsid protein (NP), and open reading frame (ORF) proteins 7a and 8. Spike-specific B cells were enriched in canonical MBC clusters, and monoclonal antibodies (mAbs) from these cells were potently neutralizing. By contrast, B cells specific to ORF8 and NP were enriched in naïve and innate-like clusters, and mAbs against these targets were exclusively non-neutralizing. Finally, we identified that B cell specificity, subset distribution, and affinity maturation were impacted by clinical features such as age, sex, and symptom duration. Together, our data provide a comprehensive tool for evaluating B cell immunity to SARS-CoV-2 infection or vaccination and highlight the complexity of the human B cell response to SARS-CoV-2.

8.
Cell ; 183(1): 169-184.e13, 2020 10 01.
Article in English | MEDLINE | ID: covidwho-720448

ABSTRACT

The coronavirus disease 2019 pandemic has made deployment of an effective vaccine a global health priority. We evaluated the protective activity of a chimpanzee adenovirus-vectored vaccine encoding a prefusion stabilized spike protein (ChAd-SARS-CoV-2-S) in challenge studies with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and mice expressing the human angiotensin-converting enzyme 2 receptor. Intramuscular dosing of ChAd-SARS-CoV-2-S induces robust systemic humoral and cell-mediated immune responses and protects against lung infection, inflammation, and pathology but does not confer sterilizing immunity, as evidenced by detection of viral RNA and induction of anti-nucleoprotein antibodies after SARS-CoV-2 challenge. In contrast, a single intranasal dose of ChAd-SARS-CoV-2-S induces high levels of neutralizing antibodies, promotes systemic and mucosal immunoglobulin A (IgA) and T cell responses, and almost entirely prevents SARS-CoV-2 infection in both the upper and lower respiratory tracts. Intranasal administration of ChAd-SARS-CoV-2-S is a candidate for preventing SARS-CoV-2 infection and transmission and curtailing pandemic spread.


Subject(s)
Coronavirus Infections/immunology , Immunogenicity, Vaccine , Pneumonia, Viral/immunology , Viral Vaccines/immunology , Adenoviridae/genetics , Administration, Intranasal , Animals , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , COVID-19 , COVID-19 Vaccines , Chlorocebus aethiops , Coronavirus Infections/pathology , Coronavirus Infections/prevention & control , Female , HEK293 Cells , Humans , Injections, Intramuscular , Mice , Mice, Inbred BALB C , Pandemics , Pneumonia, Viral/pathology , Respiratory Mucosa/immunology , Respiratory Mucosa/pathology , Respiratory Mucosa/virology , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology , Vero Cells , Viral Vaccines/administration & dosage
SELECTION OF CITATIONS
SEARCH DETAIL